
The Evaluation and Estimation of the Coefficients 
in the Chebyshev Series Expansion of a Function 

By David Elliott 

1. Introduction. Suppose f(x) is a function defined for -1 < x < 1 and Tn(x) 
is the Chebyshev polynomial of the first kind of degree n, defined by 

(1) Tn(x) = cosno with x = cos0. 

If f(x) is of bounded variation in [-1, 1] then we have 
00 

(2) f(X) = Z'anTn(X), n=o 

where Z' denotes a sum whose first term is halved. The coefficients an are given by 

(3) 2 = l 2) dx for n = 0, 1, 2, . 

Recent investigations have considered the application of Chebyshev series to 
finding numerical solutions to frequently occurring problems. The quadrature 
problem has been considered by Clenshaw and Curtis [1]; the numerical solution of 
ordinary differential equations by Clenshaw [2], Fox [3] and Clenshaw and Norton 
[4]; the numerical solution of Fredholm integral equations by the author [5] and 
[6]; and finally a simple partial differential equation by the author [7]. In many of 
these applications it is useful to be able to estimate the degree N of the polynomial 
approximation to a given function f(x), so that f(x) is then represented to within 
some prescribed accuracy. In order to do this some knowledge of the magnitude of 
the coefficients an is required, in general for large values of n. An attempt has been 
made to do this by the author [6], but the estimates given there are in general 
fairly conservative. As an example, it is shown that if f(x) is infinitely differentiable 
in -1 ? x < 1 with I 

f(n) (X) < Qn then 

(4) ~ ~ ~ ~ _ Qn 

(4) Ian < 2n-1n! 

Although this gives a good estimate for functions like sin 1irx and e', the estimate 
is poor for a function like f(x) = 4/(5 + 4x). Then Qn = 22n+2n! and equation 
(4) gives f an I< 2 n3 which although true is useless for computational purposes 
since in fact, 

a 8. 1)n for n > 0. n 3.2 

Equation (3) appears to be unsuited for estimating an for large values of n. 
It is the purpose of this paper to consider an alternative definition for an in terms of 
a contour integral. This definition can then be used to estimate an in cases when 
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f(z) (z = x + iy) has poles in the complex plane, is an entire function, is regular 
except at the points z = i 1, and has a branch point in the complex plane. These 
estimates are shown to be very good in many cases. 

2. An Alternative Definition of an. Consider the function f(z) where z = x + iy. 
By Cauchy's integral formula, we can represent f(x) by 

(5) f(x) = 
1 

L f(z) dz 27ri z - x 

where C is any contour on and within which f(z) is regular. If, in the first instance, 
the contour C is chosen so that it contains the interval -1 < x < 1, then equation 
(5) can be substituted into equation (3) to give 

(6) = I f(z)~~1I T, (x) dx dz (6) an =7r2i Jcf( {1 \/1 - X2(Z - x)J 

the inversion of the integrals being permitted under these conditions. Writing 
x = cos 0, it can easily be shown that 

1l Tn(x) dx 7r (7) 1 = 
J-1 X2Z -X) \/Z2 - 1(z /\/Z2 -i) 

where the sign is chosen so that z t \/Z2 - 1 > 1. Then, 

(8) an= 
1 

XZ f(z) dz 
(8) a 

c\/z2 - 1(Z ? \//Z2 - 1)n 

Equation (8) is the starting point for all the results of this paper. The choice of the 
contour C, and the evaluation of the contour integral will depend upon the behavior 
of f(z). 

As a first example, let us consider the case where f(z) has a simple pole at the 
point z = z1 . We first note that the equation I z t Vz2 - 1 = p, a constant 
> 1, represents an ellipse Ep with foci at the points z = =1, and with semi-axes 
a(p), b(p) given by 

a(p) = l(p + pT') and b(p) = 2(P- 1). 
As the value of p varies, we obtain a system of confocal ellipses, the segment 
-1 < x ? t corresponding to the degenerate case as p -* 1. As p increases, the semi- 
axes of the ellipse increase beyond all bounds. Returning to the problem of a func- 
tion f(z) with a pole at z = zi, suppose that this point lies on the ellipse E,, . Then 
for our contour C, we could choose any ellipse Ep where 1 < p < pi . However to 
evaluate the integral we choose as the contour C, an ellipse Ep where p > pi, 
described in the positive (counter-clockwise) direction together with a small circle 
'yi with centre at zi, described in the negative direction and a pair of lines joining 
two adjacent points on -yi, to two adjacent points on Ep and not intersecting the 
interval -1 < x < 1. Suppose f(z) has a residue r1 at the point z = zi . To evaluate 
the contour integral, we let p -> co and the radius of the circle 'yr, tend to zero. 
If f(z) is such that the integral around Ep tends to zero as p -*> c for all n, we have 
immediately that 
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(9) an ~~~~~~~~~2r, 
( 9 ) Vn 

= 
i-\ 2 

- 1(Z1 ? /z2 -1) 

valid for n > 0. It may happen however, that the integral around Ep only converges 
for values of n greater than some no. In this case equation (9) will only be valid for 
n > nO. For a given n, the integral over E, will tend to zero as p -* o0 provided 
maxEp i f(z) I = O(pn), where maxE, i f(z) I denotes the maximum value of f(z) 
on the contour Ep . This will certainly be true if I f(z) I = o( z In) as i z I -*> oo. 

This analysis canl be generalized immediately to the case where f(z) has a finite 
number (M) of poles at the points Zm for m = 1(1)M. If we now choose the 
ellipse Ep to enclose all these poles, and if as before the integral over Ep tends to 
zero as p -> oo, we have, 

M 
(10) an =- 2 _1 _2_ rn 

m=1 V\/ZM2 - (Z'm V/Z'm2 - 1)fl 

where rm is the residue of f(z) at the point Zm . Finally, if f(z) is a meromorphic 
function with an infinity of simple poles, then if the ellipse Ep is chosen so that no 
pole of f(z) lies on it, and the integral over Ep tends to zero as p -> 0o through a 
sequence of discrete values, we can let M tend to infinity in equation (10). The 
formulation is useful in this case for estimating the coefficients an for large n, 
since the contribution from each pole can then be found. An example of this estima- 
tion for such a function is given in Section 3. 

Returning to the function f(z) = 4/(5 + 4z), this has a simple pole at zi = 

1 (0 - ~~~~~~~~~8* (-1) 
n 

-5/4, with a residue of 1. Equation (9) gives immediately that an =- ( 2 ) 

which is exact. 
It should be noticed that this technique for evaluating the contour integral in 

equation (8) is not valid for entire (integral) functions. In Section 5, we consider 
a technique by which estimates may be obtained for the upper bound of lanj for such 
functions. 

3. An Example of a Function With an Infinity of Poles. In [6], the author con- 
sidered the function 

( 1 ) f(z) = 
(k2 + 1) - (k2 - 1) cos ir(a + z) 

where k and a are constants such that k > 1 and -1 _ a ? 1. The problem to be 
considered consists of finding, for a given value of k, that value of a for which the 
Chebyshev expansion of f(x) has the slowest convergence of the coefficients an, 
and estimating an in that case. 

The function f(z) has simple poles at the points 

Zm = (2m-a!) 4t i for m = 0,1 =i, =t2, .. 

where - = - arcosh 2+ Thus the poles lie along two lines parallel to the real 

axis and at a distance l from it. For a given m, each pair of poles corresponding to 
zifi, lies on an ellipse Epm where Pm =I Zm =t V/Zm2 - 1 |. The residue of f(z) at 
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TABLE 1 

r t estimated a2r actual a2r 

2 +0.03031 +0.03237 
3 -0.00743 -0.00739 
4 +0.00183 +0.00181 
5 -0.000445 -0.000445 
6 +0.0001088 +0.0001088 

Zm iS -i/27r when Im Zm > 0, and +i/27r when Im Zm < 0, and is therefore inde- 
pendent of m. Thus the largest contribution to an comes from the poles at z = 
-a ? id. This, in turn, will be a maximum when p0 is a minimum i.e. when a = 0. 
Therefore, for a given n and k, the value of an will be a maximum when a = 0 i.e. 
the most slowly convergent series for f(x) will arise in this case. 

Let us estimate the value of an for a = 0 by considering only the contribution 
from the two poles at z = 4?if. From equation (10), with M = 2, we find 

(12) 1nI+ (_-1)n (2a i 32+ + i( / + \/32 + 1 ) 

When n is odd, equation (12) gives immediately that an = 0; when n is even 
(= 2r, say) we have, 

V +32? 1 ( + \/V2?+ 1) 

The comparison of this estimate of a2r with its actual value in the case when k = 1.2 
is given in Table 1. For quite small values of r, it can be seen that these estimates 
are good. 

Finally we can see qualitatively the effect of changing k. As k becomes large, d 

tends to zero and the poles approach the real axis. Thus an for a given n becomes 
larger as k increases, and a higher degree polynomial is required to approximate 
f(x) to the same accuracy. 

4. A Pole of Order k. In Sections 2 and 3 we have considered only the case where 
J(z) has simple poles at one or more points in the complex plane. Let us now con- 
sider the case where f(z) has a pole of order k at z = z1 so that 

(13) f(z) = - Ak 
(z - zi)k 

where A-k is constant. If we write 

(14) g(z) = _ 
Z_ 

1 
V/Z 

2 - 1 (z ? Vz2 - 1 

then from equation (8) we find on using the same limiting process for the contour 
C, that 

an= -2 X (residue of f(z)g(z), at z = zi), 

from which equations (13) and (14) give 
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(15) an 2A- e (k-1)(z ) 

The problein of determining an is thus reduced to finding an explicit expression for 
the (k - 1)st derivative of g(z). In order to do this we distinguish four cases, and 
will first consider the case when Re z1 > 1. 

When Re z > 1, the correct choice of sign in g(z) is the positive one in order that 
Z zt ?\/Z2 -1 I should be > 1. Now Erdelyi et al. [8, p. 240] gives 

(16) g(z) 1 zn =), feIztIn(t) dt 

provided Re z > 1, where In(t) is the modified Bessel function of order n. Dif- 
ferentiating equation (16), (k - 1) times with respect to z, gives 

g(k-l)(Z) = (_,)k-1 I tk ezt In(t) dt. 

Again, from Erdelyi [8, p. 196], we find 

(17) (k-1) () (n + k 1)! p n z 

(17) 9 ~ ~~~~(2 - 1)k12 Pk-1, 11 
valid for n > 0 and k > 1 where P-n2 denotes the associated Legendre function of 
the first kind. Combining equations (15) and (17) we obtain the required result 
when Re zi > 1, 

(18) a~~~~ - 2( _1)k(n + k - 1)!1p- (Z1 (18) an = 
(k - 1)! (z12 - 1)k12 k1 /Z2 1/-k 

An asymptotic form of an can be given for large n. For example, Hobson [9, p. 308] 
gives 

(19) P (21 ( 2 - 1) n! (1 + +2- 1) [i+\J (h)] 
which is valid provided 

(20) _ _ -1 < 2. 
-\/ZJ 2- 

Thus, subject to the condition on zi given by equation (20), we have for large n, 

(21) an (k- 2(1 ) 1)k n ( ) z + 
- 

/zi2 i)k (Rez1 > 1). 

When k = 1, this asymptotic form for an is exact for all n. When k = 2, we have 
that an is given explicitly by 

a -)2A-2 n+ Z- 1 
n 

=(z2 (zl + \/zi2 ) L -\/Z - 
whereas equation (21 ) gives in this case 

(Z(2 1) (Z1 + Z12 -1) 

which is quite a good approximation for values of z1 not too close to z = 1. 



CHEBYSHEV SERIES EXPANSION OF A FUNCTION 279 

We can proceed in a similar fashion when Re zl < -1, and we find 

2(_1)n+k (n + k - 1)! A_k p-n NZ 
(k - 1)! (Z12 - I)kl2 k-1 KvZl2 1J 

which agrees with a result previously given by Wimp [10] when z1 is on the negative 
real axis such zi < -1. 

When I Re zi I < 1, we again consider two cases depending upon whether 
Im z > 0 or < 0. First let uis consider the case when Im z > 0. Define v by 

(23) z = vei7r2 

so that Re ? > 0. In terms of ?, g(z) is given by 
-(n+l) ir/2 

g(z) 2 +1 (? + v2 + 1)n 

the correct sign having been chosen, and from Erd6lyi, et al. [2, p. 240] we have 

(24) g (z) =e- (n+l)i7r2 f e-t J (t) dt. 

This is valid for t > 0, and Jn(t) denotes the Bessel function of the first kind of 
order n. Differentiating equation (24), (k - 1) times with respect to z and using 
the result given by Erdelyi et al. [2, p. 182] we find 

(25) y(k-1) ( (1)k- ern2 (k + n - 1 )! p_n ( Z ) (25) gkl(z) -(2 - 1)k12 - k-'1Vz-i 

We can proceed similarly to find an analogous result for g(k-l) (z) when Im z < 0, 
by writing z = Pe-(i7rI2). From these results we find 

2((6)k 2( (irn/2) (k + n - 1)! A_k p-n Zi 
(26) azn = h-1 zl ) k-1 V 

where the negative sign is chosen when Im z> ? respectively. positive < 0 
Equations (18), (22) and (26) give the required values of the coefficient an 

in the Chebyshev series expansion of the function f(x) = (- - 
)k for all possible 

values of Zi1 

5. Entire Functions. So far we have considered only functions with poles in the 
complex plane. In this section we consider entire functions. We again take as our 
starting point equation (8), and choose as the contour C, the ellipse Ep . Consider 
the transformation 

(27) z = 12( + 1/i) 

This maps the exterior of the ellipse Ep in the z-plane onto the exterior of a circle 
Cp, of radius p and centre the origin in the h-plane. With this transformation, we 
find, 

(28) axn = . I C [2 ($; +1 
7rt cp A,n+l 
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If the Laurent expansion of f + is known, and in particular if the coefficient 

of tB is a, , then we have immediately an =2an . However, it is not likely in general 
that a,, will be known. We can then estimate an upper bound for Ja"l quite simply. 
Suppose ll(p) denotes the maximum values of I f i on the circle Cp (or equivalently 
the ellipse Ep), then equation (28) gives immediately 

(29) | n 2M-J(p) 
p 

By varying p, we find that value p say, for which 2MI(p)lp' is a ininimum. We 
then have 

pn 
~~~~~~Ian 

examplen, a.1 M(* As an example, let us consider the function ex. Now eZ attains its maximum 

modulus on the ellipse Ep at z = a, so we have Ml(p) = e(1/2)(P+P1). For a given n, 
the quantity M 

(p)/lp attains a minimum value at p* = n + \/n2 +1. 
Thus 

(30) la, I_ 2eV212r (n + Vn2 + I)n- 2 In1 

for large values of n. It is of interest to compare this value with that obtained 
from eqluation (4), which in this case gives ? an i-e/2n-1n !. This is a better approxi- 
mation to an than that given by equation (30). Since eX = 2Zn=oIn(1)Tn(x) 

we have for large n, a,, 2n-I !. However, the use of equationl (4) does need a 

kniowledge of the nth derivative of f(x) and this is not in general as readily available 
as the value of f(z) at points in the complex plane. 

6. Functions Regular Except at z = + 1. We are not yet in a position to estimnate 
the coefficients in the expansion of a function like f(x) = I - x which is regular 
everywhere except at the point x = 1. In this section we shall derive such a result. 
The corresponding result for a function which is not regular at x = -1 will then be 
stated without proof. 

Let us suppose that f(x) = (1- x) g(x), where 0 is not an integer and g(x) 
is regular at x = 1. Since f(x) has, in particular, to be bounded at x = 1, we have 
0 > 0. In equation (8), we shall now choose as the contour C, the ellipse Ep de- 
sciibed in the positive direction, a small circle y of radius E, centre +1 described 
negatively, and two line segments AB and CD where AB is just below and parallel 
to the real axis, the point A4 being on the ellipse Ep, the point B on the circle -y; 
and CD is just above and parallel to the real axis, the point C being on the circle 
ay, D on the ellipse Ep . The function f(z) is regular within such a contour. We 
again assume that f(z) is such that the integral over Ep will tend to zero as p be- 
comes large. Since 0 > 0, the integral around y will teiid to zero as e -* 0. Thus in 
the limit as p > oo and e -* 0, the only contributions to an will come from the 
integrals along AB and CD. Taking f(z) = (1 - z)oq(z), we find that the two 
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integrals along AB and CD combine to give 

(31) a 
2sin7rn 

lim x-1 g( 
sl i Vo -_ 1 (x + /x2 

Putting x = cosh 0, if a = cosh () then 

2 sin ir,6. 20\- (32) an = - lim | 2 sinh' g(cosh 0) e-0 dO. 
Xr 0-o0 2 

In order to approximate this integral, we assume that n is chosen so large, and 
g(x) is such that the main contribution to the integral comes from the values close 

0 0 
to 0 = 0. Replacing sinh - by - and g(x) by g( 1) we obtain 

22 

an ?-21-' g(1) * sin (irk) f 02'e-0 dO. 
7ro 

Writing t = nO, we find 

(33) a~~ '-~-~ 21- g(1) sin (Oro)r( (33) an + 7rn 20+1 r(20 + 1). 

This is the required result for this case. As an example, consider again the function 
f(x) = /I - x. Now, 

(34) 4- = - Z E Tn(X). 
rnO 4n'-1 

From equation (33) we have on putting q = 2 and g(l) - 1, 

an - 
7rn2 

which compares very well with the exact result an = -\/2/7r(n22- 
A similar result can be obtained for the point z = -1. If f(x) = (1 + x),h(x) 

where h(x) is regular x = -1, then 

2'-4 sin 4-0,'h-1) ~ ~ +I 
(35) an L _ 2 s)n r(2q/ + 1). 

These two results can be superposed if necessary, and as an example let us con- 
sider the estimate of an for the function f(x) - /1 - X2. The function f(z) = 
(1 _ Z2)1/2 is regular everywhere except at z = ?1. Combining the results of equa- 
tions (33) and (35) we find, 

a2n 2 and a2n+l = 0, 
.7rn2 

which compares favorably with the actual values a2n -1/ir(n2- ) and a2n+l = 0. 

7. Branch Point on Real Axis. The last case we shall consider is that where 
f(z) has a branch point at z = c on the real axis where c > 1. As an example of such 
a function we have f(x) = -\/2 - x, where there is a branch point of f(z) at z = 2. 
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TABLE 2 

n estimated a. actual a. 

4 -0.000497 -0.000536 
5 -0.000096 -0.000100 
6 -0.000019 -0.000020 
7 -0.000004 -0.000004 
8 -0.000001 -0.000001 

Suppose that we have f(z) = (c - z)og(z) where 0 can be any number, not an 
integer, and g (z) is regular at z = c. The contour C is chosen in a way similar to that 
for the case when f(z) has a branch point at z = 1 but with the circle 'y enclosing 
the point z = c. In order that the integral around y should tend to zero when the 
radius tends to zero, we must have 0 > -1. Assuming also that the integral around 
the ellipse Ep tends to zero as p tends to infinity, we find on combining the contribu- 
tions to the integral from the lines AB and CD that 

2 sin 7r li x -c I' g(x) dx 
(r a->oo VX2 - 1 (x + n/X2 - 

As before, writing x = cosh 0, then if c = cosh a we have 

an im 2 sinh sinh 2 a] g(cosh 0)e 0 dO. 
7r 0->o c 2 2 

Again, considering that n is chosen and g(cosh 0) is such that the major contribu- 
tion to the integral comes from around 0 = a, we find, assuming that (0 - a) is 
small, 

- 
2 sin iro(sinh a)og(c) f0 (O - a) e-n' dO. 

Ir c 

On making the substitution t = n(0 - a), we have the required result, 

( 37 ) an 
~ _ 2 sin iro(c - 1)0'g(c)F(( + 1) (37) - w~~~~~~n 01 c ? 

x\/C 2 
-I) 

A comparison of this estimated value of an with the actual value for the function 
/2 - x is given in Table 2. 

Once again, the estimated values obtained from equation (37) compare very well 
with the actual values. 

Proceeding as above we can derive a similar result for the case when f(z) has a 
branch point on the negative real axis at z = -c, (c > 1). If f(z) = (c + z) h(z) 
where h(z) is regular at z -c, then for VI > -1, we find for large n, 

(38) a, <, _2 sin 7rC(C2 -1) h(-c)(-1)tF/ + 1) (38) a1, - 
w~~~7n ~(c + V\C 2 - n 

8. Extension to Expansions in Jacobi Polynomials. The foregoing analysis can 
be generalized to the case where f(x), defined for -1 < x < 1, is expanded in a 
series of Jacobi polynomials P(ar?(x), see Szego [11]. Suppose 
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f(x) = ZanFa (x) n=o 

then 

(39) an = h_(a,f) f w(x)pFa,)(x)f(X) dx, 

where [11, equation (4.3.3)], 

h (a) ?- 2(a?++1)Pr(n + a + 1)F(n + d + 1) 
(2n + a +3 + 1)r(n + 1)P(n + a +3 + 1) 

and 

ll(X) = (1 - X)a(1 + X):. 

Substituting for f(x) from equation (5) into equation (39) we find 

a = b f f(z) {f1 w(x)Pn (a /(x) dx} dz. 

From [11, equation (4.61.4)] we have immediately 

I _ C( ag (40) an = f (z) .2(z -1) (z + 1)Q(?(z) dz. 

Suppose now that n is large; then a suitable asymptotic form for Qn(a,) (z) is given 
by (see Barrett, [12]), 

2(z - 1)a(z + 1) (a ) (Z) -| 

(41) 2(a+?+1)/2(z _ 1)(a/2)-(1/4) (z + .1) (/2)-(1/4) 

(Z =t /Z2 - 1 
I)n?2(a?:1) 

where the sign in (z t V/Z2 -1) is chosen so that i z = z2- 1 > 1. This 
representation of Qn(a, ?(z) is valid in the plane cut along [- 1, 1] with the neighbor- 
hood of the two points z = =t1 removed. Substituting equation (41) into (40) we 
have the required generalization of equation (8), 

(42) a~ ~1~j~ai 1" 2(a?0?1)I/2 ff(Z) (Z - j)(a12)-(1/4)(Z ? 1)(0I2)-(1I4) 
(42) 2i - ++1 ( ( X/z2 1)n+?(a+?+1) dz, 

where C is chosen so that f(z) is regular within C. An analysis similar to that given 
in Sections 2-7, can be made on this equation. 

9. Conclusion. In this paper we have considered estimates for the coefficients 
in the Chebyshev series expansion of a function f(x). The form of the estimate 
depends upon whether f(z) has poles, or has a branch point on the real axis includ- 
ing the end points z = i 1, or whether f(x) is an entire function. The results may 
be superposed. Consider for example the function f(x) = ex/(l + x2). This func- 
tion has simple poles at z = =ti, but the integral in equation (8) does not tend to 
zero around the ellipse E, as p -*> oo. Nevertheless an estimate to the coefficients Ian| 
can be found in this case by combining the results of Section 2 with the technique for 
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entire functions as described in Section 5. Combining the results obtained in this 
way, estimates for the coefficients an for large n may be obtained with considerable 
accuracy for a large variety of functions. 
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